NMR assignments for the *Sinorhizobium meliloti* response regulator Sma0114

Sarah R. Sheftic · Preston P. Garcia · Victoria L. Robinson · Daniel J. Gage · Andrei T. Alexandrescu

Received: 6 May 2010 / Accepted: 22 September 2010 / Published online: 10 October 2010 © Springer Science+Business Media B.V. 2010

Abstract Response regulators are terminal ends of bacterial two-component systems that undergo extensive structural reorganization in response to phosphoryl transfer from their cognate histidine kinases. The response regulator encoded by the gene *sma0114* of *Sinorhizobium meliloti* is a part of a unique class of two-component systems that employ HWE histidine kinases. The distinct features of Sma0114 include a PFxFATGY motif that houses the conserved threonine in the “Y–T coupling” conformational switch which mediates output response through downstream protein–protein interactions, and the replacement of the conserved phenylalanine/tyrosine in Y–T coupling by a leucine. Here we present 1H, 15N, and 13C NMR assignments for Sma0114. We identify the secondary structure of the protein based on TALOS chemical shift analysis, J_{NNH} coupling constants and hydrogen–deuterium exchange. The secondary structure determined by NMR is in good agreement with that predicted from the sequence. Both methods suggest that Sma0114 differs from standard CheY-like folds by missing the fourth α-helix. Our initial NMR characterization of Sma0114 paves the way to a full investigation of the structure and dynamics of this response regulator.

Keywords Two-component systems · Response regulator · HWE histidine kinase · Rossman-fold · CheY motif

Biological context

Bacteria, being single cell organisms in direct contact with their surroundings, have evolved sophisticated signaling pathways to detect and respond to changes in environmental conditions. The two-component systems are amongst the most ubiquitous signal transduction mechanisms used by bacteria (Stock et al. 2000). Two-component systems consist of a sensor histidine kinase that autophosphorylates in response to an external stimulus, and a response regulator that catalyzes the transfer of a phosphate from the histidine kinase to a conserved aspartate residue in its “receiver domain” (Laub and Goulian 2007; Stock et al. 2000). Phosphorylation results in a conformational transition of the response regulator, which mediates its interactions with downstream molecules that affect gene expression and physiology (Laub and Goulian 2007; Stock et al. 2000). The subject of the present study is a two-component system recently identified in a screen for genes that regulate catabolite repression and carbon metabolism in the nitrogen-fixing symbiont *Sinorhizobium meliloti*. The two-component system is comprised of the histidine kinase Sma0113 and the response regulator Sma0114.

Receiver domains of response regulators are typically about 110 amino acids long and are structurally and functionally analogous to members of the Ras family of small eukaryotic GTPases (Stock et al. 1991). We thus expect the 120 amino acid (13.5 kDa) Sma0114 protein to have a CheY-like structure, belonging to the α/β Rossman-fold superfamily. Regulatory regions of receiver domains

S. R. Sheftic · V. L. Robinson · D. J. Gage · A. T. Alexandrescu
Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd., Storrs, CT 06269-3125, USA
e-mail: daniel.gage@uconn.edu

A. T. Alexandrescu
e-mail: andrei@uconn.edu

P. P. Garcia
Natural Sciences Department, Castleton State College, Castleton, VT 05735, USA

DOI 10.1007/s12104-010-9266-1
are characterized by a set of conserved residues clustered in an active site at the C-terminal edge of the β-sheet. An aspartate (D60 in Sma0114) serves as the site of phosphorylation, a pair of acidic residues are typically involved in magnesium binding (E15 and D16), and a lysine (K105) interacts through electrostatic interactions with the phosphate. Two additional conserved amino acids a hydroxylic residue (Ser/Thr) and an aromatic residue (Phe/Tyr) play direct roles in the activation mechanism. Transfer of a phosphoryl group to the aspartate, prompts reorientation of the Ser/Thr to hydrogen bond with the phosphate, creating a space that allows the Phe or Tyr residue to rotate inward. This conformational rearrangement called “Y–T coupling” transforms the overall character of the α4–β5–α5 face of the protein. The conformational transition in turn governs the specific interactions that mediate the output response (Laub and Goulian 2007; Stock and Guhaniyogi 2006; Stock et al. 2000), which in the case of Sma0114 are probably mediated through protein–protein interactions.

Sma0114 has a number of important differences from previously characterized response regulators. Response regulators associated with the HWE family of histidine kinases (Karniol and Vierstra 2004) either because the two components are linked on the same polypeptide chain or included in our numbering scheme for the protein, which runs from residues G1 to V123 part of the wild type Sma0114 amino acid sequence. We did not detect NMR signals from the amide protons of the extra residues G1–H3, suggesting they are disordered.

Nuclear magnetic resonance spectroscopy

Sma0114 samples for NMR contained 500 µM protein in 50 mM sodium phosphate buffer pH 6.0, with 1 mM DTT. Samples of 250 µl volumes were taken up Shigemi microcells. Spectra were recorded on a Varian INOVA 600 MHz spectrometer equipped with a cryogenic probe. The temperature for all experiments was 37°C.

NMR assignments were obtained using 2D and 3D experiments (Cavanagh et al. 2006) implemented in the Varian Protein Pack. Starting from the 2D 1H–15N HSQC spectrum, backbone 1H, 15N and 13C resonances were assigned using two redundant sequential walk pathways. The first used 3D HNCACB, HNCA and HN(CO)CA data to establish Cα and Cβ connections across peptide bonds. The second pathway used HNCO and HN(CA)CO experiments to connect Cα carbons across peptide bonds. The backbone assignments for Sma0114 are summarized in Fig. 1. Side chain assignments were obtained from 3D HCCH-TOCSY, H(HC)CO/NH, C(CO)NH, HNHA, HNHB, 1H–15N TOCSY-HSQC, and 2H–13C HSQC-NOESY data. Stereo-specific assignments for methylene protons were based on short mixing time (25 ms) 2D NOESY, 3D 1H–15N NOESY-HSQC and HNHB experiments as described (Case et al. 1994). Aromatic 1H and 13C resonances were obtained from 2D 1H–13C HSQC, DFQ-COSY
Fig. 1 1H-15N HSQC spectrum of Sma0114. Backbone assignments are indicated with pink labels. Peaks that could only be seen at contours lower than shown (M4, E17) are denoted by squares. Side chains amide resonances are indicated with blue dashed lines and labels, with the superscript SC. Data were collected at pH 6.0 and a temperature of 37°C.

Fig. 2 Secondary structure of Sma0114. a Amino acid sequence of Sma0114, amide protons protected from exchange after 2 h in D$_2$O at pH 6.0 and 37°C. TALOS predictions of secondary structure based on HN, N, Hz, Cz, Cβ and C’ chemical shifts (Cornilescu et al. 1999), and secondary structure predicted using the PSIPRED server (Bryson et al. 2005). b Cz chemical shifts minus random coil values (Wishart et al. 1995a). Positive deviations correspond to α-helix, negative to β-sheet. c Cβ chemical shifts minus random coil values (Wishart et al. 1995a). Negative deviations correspond to α-helix, positive to β-sheet. d 3J$_{HNH}$ couplings obtained from a 3D HNHA experiment, presented as 3J$_{HNH}$—7 Hz. Positive and negative differences correspond to β-sheet and α-helix secondary structure, respectively.
and TOCSY data. 2D NOESY experiments (150 ms mixing time) using a sample in D₂O were used to connect aromatic resonances with previously assigned aliphatic resonances. Side chain amide resonances were linked through intra-residue NOEs to previously assigned aliphatic protons using 3D ¹H,¹⁵N NOESY-HSQC data. DSS was used as an internal reference for ¹H resonances, and ¹³C and ¹⁵N resonances were referenced indirectly (Wishart et al. 1995b). Spectra were processed and analyzed using FELIX-NMR and iNMR.

The limits of secondary structure elements were determined using ³JHNHα-coupling constants (Vuister and Bax 1993), TALOS chemical shift analysis (Cornilescu et al. 1999) and hydrogen–deuterium exchange data. These data are summarized in Fig. 2. The secondary structure established by NMR agrees with the secondary structure predicted from the sequence using the PSIPRED server (Bryson et al. 2005). Both methods indicate that helix α₄ of the prototypical CheY-fold, is absent in Sma0114 (corresponding to residues 90–99). The α₄-β₅-α₅ face of response regulators is critical in transmitting the kinase phosphorylation signal to downstream binding partners (Gao and Stock 2010; Stock et al. 2000), so the absence of helix α₄ in Sma114 may signify a distinct mechanism of coupling between HWE kinases and their cognate response regulators.

Assignments and data deposition

¹HN, ¹⁵N, ¹³C, Cα, Cβ, Hz and Hβ resonances were assigned for 94% of the amino acids in Sma0114. In total, we obtained assignments for 84% of all carbons (90% of aliphatic carbons and 65% of aromatic carbons), 84% of all protons (84% aliphatic and 85% of aromatic protons) and 75% of all nitrogens. Five of 118 non-proline residues were not observed in the ¹H,¹⁵N HSQC spectrum: F107 and L108, as well as residues G1-H3 which are not part of the wild type sequence but were introduced as part of a thrombin cleavage site used in purification of Sma0114. Chemical shift assignments are deposited in the Biological Magnetic Resonance Bank (http://www.bmrb.wisc.edu) under accession code BMRB-16905.

Acknowledgments

This work was supported by a grant from the UConn Research Foundation (UCRF) to A.T.A. and D.J.G. and by DOE grants (DE-FG02-01ER15175 and DE-FG02-06ER15805) to D.J.G.

References